EconPapers    
Economics at your fingertips  
 

Derivation of power-law distributions within standard statistical mechanics

Rudolf Hanel and Stefan Thurner

Physica A: Statistical Mechanics and its Applications, 2005, vol. 351, issue 2, 260-268

Abstract: We show that within classical statistical mechanics it is possible to naturally derive power-law distributions which are of Tsallis type. The only assumption is that microcanonical distributions have to be separable from of the total system energy, which is reasonable for any sensible measurement. We demonstrate that all separable distributions are parametrized by a separation constant Q which is one to one related to the q-parameter in Tsallis distributions. The power laws obtained are formally equivalent to those obtained by maximizing the Tsallis entropy under q constraints. We further ask why nature fixes the separation constant Q to 1 in so many cases leading to standard thermodynamics. We answer this with an explicit example where it is possible to relate Q to system size and interaction parameters, characterizing the physical system. We argue that these results might be helpful to explain the ubiquity of Tsallis distributions in nature.

Keywords: Boltzmann distribution; Power laws; Non-extensive thermodynamics; Tsallis distribution; Extremal principle (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104015365
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:351:y:2005:i:2:p:260-268

DOI: 10.1016/j.physa.2004.11.055

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:351:y:2005:i:2:p:260-268