A tale of two tails: Do Power Law and Lognormal models fit firm-size distributions in the mid-Victorian era?
Piero Montebruno,
Robert Bennett,
Carry van Lieshout and
Harry Smith
Physica A: Statistical Mechanics and its Applications, 2019, vol. 523, issue C, 858-875
Abstract:
The paper explores the frequency and size distributions of firm-size in a novel dataset for the mid-Victorian era from a recent extraction of the England and Wales population censuses of 1851, 1861, 1871, and 1881. The paper contrasts the hypothesis of the Power Laws against the Lognormal model for the tails of the distributions using maximum likelihood estimation, log likelihood ratio, clipped sample coefficient of variation UMPU-Wilks test, Kolmogorov–Smirnov statistic, among other state-of-the-art statistical methods. Our results show that the Power Law hypothesis is accepted for the size distribution for the years 1851 and 1861, while 1871 is marginally non-significant, but for 1881 the test is inconclusive. The paper discusses the process that generates these distributions citing recent literature that shows how after adding an i.i.d. noise to the Gibrat’s multiplicative model one can recreate a Power Law behaviour. Overall, the paper provides, describes and statistically tests for the very first time a unique historical dataset confirming that the tails of the distributions at least for 1851 and 1861 follow a Pareto model and that the Lognormal model is firmly rejected.
Keywords: Power Law; Pareto distribution; Zipf’s law; Lognormal distribution; Gibrat’s law; Firm size; Victorian census (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119302079
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:523:y:2019:i:c:p:858-875
DOI: 10.1016/j.physa.2019.02.054
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().