EconPapers    
Economics at your fingertips  
 

On the potential of quantum walks for modeling financial return distributions

Stijn De Backer, Luis E.C. Rocha, Jan Ryckebusch and Koen Schoors

Physica A: Statistical Mechanics and its Applications, 2025, vol. 657, issue C

Abstract: Accurate modeling of the temporal evolution of asset prices is crucial for understanding financial markets. We explore the potential of discrete-time quantum walks to model the evolution of asset prices. Return distributions obtained from a model based on the quantum walk algorithm are compared with those obtained from classical methodologies. We focus on specific limitations of the classical models, and illustrate that the quantum walk model possesses great flexibility in overcoming these. This includes the potential to generate asymmetric return distributions with complex market tendencies and higher probabilities for extreme events than in some of the classical models. Furthermore, the temporal evolution in the quantum walk possesses the potential to provide asset price dynamics.

Keywords: Financial return distributions; Quantum walks (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124007246
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007246

DOI: 10.1016/j.physa.2024.130215

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007246