Intelligent simulation and prediction of traffic flow dispersion
Fengxiang Qiao,
Hai Yang and
William H. K. Lam
Transportation Research Part B: Methodological, 2001, vol. 35, issue 9, 843-863
Abstract:
Dispersion of traffic flow on urban road segments is often described by some typical statistical models such as the normal distribution model and the geometric distribution model. These probability-based models can fit traffic flow well under ideal physical environments but may not work satisfactory in certain complex cases because of their strict mathematical assumptions. A neural network-based system identification approach is used to establish an auto-adaptive model for simulating traffic flow dispersion. This model, being feasible to a wide variety of traffic circumstances, can be calibrated and used for on-line traffic flow forecasting. Data simulation and field-testing show reliable performance of the proposed intelligent approach.
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00024-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:35:y:2001:i:9:p:843-863
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().