A global optimization method for continuous network design problems
Changmin Li,
Hai Yang,
Daoli Zhu and
Qiang Meng
Transportation Research Part B: Methodological, 2012, vol. 46, issue 9, 1144-1158
Abstract:
The continuous network design problem (CNDP) is generally formulated as a mathematical program with equilibrium constraints (MPEC). It aims to optimize the network performance via expansion of existing links subject to the Wardrop user equilibrium constraint. As one of the extremely challenging problems in the transportation research field, various solution methods have been proposed for solving the CNDP. However, most of the algorithms developed up to date can only find a local optimum due to inherent nonconvexity of the MPEC. This paper proposes a viable global optimization method for the CNDP. Based on the concepts of gap function and penalty, the CNDP is transferred into a sequence of single level concave programs, which is amenable to a global solution. It is proved that any accumulation of the solutions to the sequence of concave programs is a globally optimal solution to the original CNDP. Owing to their special structure, all concave programs can be solved by a multicutting plane method. The penalty term in each step of the inner subproblem can be calculated by simply executing an all-or-nothing assignment.
Keywords: Traffic equilibrium; Network design; Gap function; Concave program; Multicutting plane method; Global optimum (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261512000756
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:46:y:2012:i:9:p:1144-1158
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2012.05.003
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().