Predicting Oil Prices: An Analysis of Oil Price Volatility Cycle and Financial Markets
Lu-Tao Zhao,
Zi-Jie Wang,
Shu-Ping Wang and
Ling-Yun He
Emerging Markets Finance and Trade, 2021, vol. 57, issue 4, 1068-1087
Abstract:
Given the importance of crude oil prices in the world economy, accurate price prediction has drawn extensive attention. Nevertheless, because of the complexity of the crude oil market, most traditional forecasting algorithms fail to meet the accuracy requirements. To achieve higher precision, this paper proposes a novel hybrid model for crude oil price forecasting by combining a Hodrick-Prescott filter with X12 methods and adjusting the order used. Application of our model on both West Texas Intermediate and Brent oil prices forecasting demonstrates its accuracy. The results of various forecasting performance evaluation criteria indicate that the model has stronger stability and better accuracy. The mechanism of seasonal and periodic factors is also analyzed, which provides remarkable references to other time-series predictions. Establishing two different types of predictive models that combine multiple knowledge effectively has obvious advantages over other models and provides more reliable cutting-edge information for designing a Chinese energy development strategy.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/1540496X.2019.1706045 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mes:emfitr:v:57:y:2021:i:4:p:1068-1087
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/MREE20
DOI: 10.1080/1540496X.2019.1706045
Access Statistics for this article
More articles in Emerging Markets Finance and Trade from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().