Quantifying the failure of bootstrap likelihood ratio tests
Mathias Drton and
Benjamin Williams
Biometrika, 2011, vol. 98, issue 4, 919-934
Abstract:
When testing geometrically irregular parametric hypotheses, the bootstrap is an intuitively appealing method to circumvent difficult distribution theory. It has been shown, however, that the usual bootstrap is inconsistent in estimating the asymptotic distributions involved in such problems. This paper is concerned with the asymptotic size of likelihood ratio tests when critical values are computed using the inconsistent bootstrap. We clarify how the asymptotic size of such a test can be obtained from the size of the corresponding bootstrap test in the relevant limiting normal experiment. For boundary problems, that is, hypotheses given by convex cones, we show the bootstrap test to always be anticonservative, and we compute the size numerically for different two-dimensional examples. The examples illustrate that the size can be below or above the nominal level, and reveal that the relationship between the size of the test and the geometry of the considered hypotheses is surprisingly subtle. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr033 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:4:p:919-934
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().