Testing collinearity of vector time series
Tucker McElroy () and
Agnieszka Jach
The Econometrics Journal, 2019, vol. 22, issue 2, 97-116
Abstract:
SummaryWe investigate the collinearity of vector time series in the frequency domain, by examining the rank of the spectral density matrix at a given frequency of interest. Rank reduction corresponds to collinearity at the given frequency. When the time series is nonstationary and has been differenced to stationarity, collinearity corresponds to co-integration at a particular frequency. We examine rank through the Schur complements of the spectral density matrix, testing for rank reduction via assessing the positivity of these Schur complements, which are obtained from a nonparametric estimator of the spectral density. New asymptotic results for the test statistics are derived under the fixed bandwidth ratio paradigm; they diverge under the alternative, but under the null hypothesis of collinearity the test statistics converge to a non-standard limiting distribution. Subsampling is used to obtain the limiting null quantiles. A simulation study and an empirical illustration for 6-variate time series data are provided.
Keywords: Trend co-integration; seasonal co-integration; Schur complement; spectral density rank; fixed-b asymptotics; subsampling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/uty002 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:22:y:2019:i:2:p:97-116.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().