Expectations and the Stability Problem for Optimal Monetary Policies
George Evans and
Seppo Honkapohja
The Review of Economic Studies, 2003, vol. 70, issue 4, 807-824
Abstract:
A fundamentals based monetary policy rule, which would be the optimal monetary policy without commitment when private agents have perfectly rational expectations, is unstable if in fact these agents follow standard adaptive learning rules. This problem can be overcome if private expectations are observed and suitably incorporated into the policy maker's optimal rule. These strong results extend to the case in which there is simultaneous learning by the policy maker and the private agents. Our findings show the importance of conditioning policy appropriately, not just on fundamentals, but also directly on observed household and firm expectations. Copyright 2003, Wiley-Blackwell.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (216)
Downloads: (external link)
http://hdl.handle.net/10.1111/1467-937X.00268 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Expectations and the Stability Problem for Optimal Monetary Policies (2001) 
Working Paper: Expectations and the Stability Problem for Optimal Monetary Policies (2001) 
Working Paper: Expectations and the Stability Problem for Optimal Monetary Policies (2000)
Working Paper: Expectations and the stability problem for optimal monetary policies (2000) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:restud:v:70:y:2003:i:4:p:807-824
Access Statistics for this article
The Review of Economic Studies is currently edited by Thomas Chaney, Xavier d’Haultfoeuille, Andrea Galeotti, Bård Harstad, Nir Jaimovich, Katrine Loken, Elias Papaioannou, Vincent Sterk and Noam Yuchtman
More articles in The Review of Economic Studies from Review of Economic Studies Ltd
Bibliographic data for series maintained by Oxford University Press (joanna.bergh@oup.com).