Vine copula regression for observational studies
Roger Cooke,
Harry Joe and
Bo Chang
Additional contact information
Harry Joe: University of British Columbia
Bo Chang: University of British Columbia
AStA Advances in Statistical Analysis, 2020, vol. 104, issue 2, No 1, 167 pages
Abstract:
Abstract If explanatory variables and a response variable of interest are simultaneously observed, then fitting a joint multivariate density to all variables would enable prediction via conditional distributions. Regular vines or vine copulas with arbitrary univariate margins provide a rich and flexible class of multivariate densities for Gaussian or non-Gaussian dependence structures. The density enables calculation of all regression functions for any subset of variables conditional on any disjoint set of variables, thereby avoiding issues of transformations, heteroscedasticity, interactions, and higher-order terms. Only the question of finding an adequate vine copula remains. Heteroscedastic prediction inferences based on vine copulas are illustrated with two data sets, including one from the National Longitudinal Study of Youth relating breastfeeding to IQ. Some usual methods based on linear and quadratic equations are shown to have some undesirable inferences.
Keywords: Regular vine; Gaussian copula; Heteroscedasticity; National Longitudinal Study of Youth; Breastfeeding; IQ; Pitfalls of regression inference (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10182-019-00353-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:104:y:2020:i:2:d:10.1007_s10182-019-00353-5
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-019-00353-5
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().