Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables
Xiaofeng Lv () and
Rui Li
AStA Advances in Statistical Analysis, 2013, vol. 97, issue 4, 317-347
Abstract:
In this paper, we consider the estimation and inference of the parameters and the nonparametric part in partially linear quantile regression models with responses that are missing at random. First, we extend the normal approximation (NA)-based methods of Sun ( 2005 ) to the missing data case. However, the asymptotic covariance matrices of NA-based methods are difficult to estimate, which complicates inference. To overcome this problem, alternatively, we propose the smoothed empirical likelihood (SEL)-based methods. We define SEL statistics for the parameters and the nonparametric part and demonstrate that the limiting distributions of the statistics are Chi-squared distributions. Accordingly, confidence regions can be obtained without the estimation of the asymptotic covariance matrices. Monte Carlo simulations are conducted to evaluate the performance of the proposed method. Finally, the NA- and SEL-based methods are applied to real data. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Smoothed empirical likelihood; Partially linear quantile regression; Missing at random (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10182-013-0210-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:97:y:2013:i:4:p:317-347
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-013-0210-4
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().