Probabilistic reasoning about measurements of equilibrium climate sensitivity: combining disparate lines of evidence
Roger Cooke and
Bruce Wielicki
Additional contact information
Bruce Wielicki: NASA Langley Research Center, Science Directorate
Climatic Change, 2018, vol. 151, issue 3, No 12, 554 pages
Abstract:
Abstract Where policy and science intersect, there are always issues of ambiguous and conflicting lines of evidence. Combining disparate information sources is mathematically complex; common heuristics based on simple statistical models easily lead us astray. Here, we use Bayesian Nets (BNs) to illustrate the complexity in reasoning under uncertainty. Data from joint research at Resources for the Future and NASA Langley are used to populate a BN for predicting equilibrium climate sensitivity (ECS). The information sources consist of measuring the rate of decadal temperature rise (DTR) and measuring the rate of percentage change in cloud radiative forcing (CRF), with both the existing configuration of satellites and with a proposed enhanced measuring system. The goal of all measurements is to reduce uncertainty in equilibrium climate sensitivity. Subtle aspects of probabilistic reasoning with concordant and discordant measurements are illustrated. Relative to the current prior distribution on ECS, we show that after 30 years of observing with the current systems, the 2σ uncertainty band for ECS would be shrunk on average to 73% of its current value. With the enhanced systems over the same time, it would be shrunk to 32% of its current value. The actual shrinkage depends on the values actually observed. These results are based on models recommended by the Social Cost of Carbon methodology and assume a Business as Usual emissions path.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-018-2315-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:151:y:2018:i:3:d:10.1007_s10584-018-2315-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-018-2315-y
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().