Policy convergence in a two-candidate probabilistic voting model
Alexei Zakharov () and
Constantine Sorokin ()
Social Choice and Welfare, 2014, vol. 43, issue 2, 429-446
Abstract:
We propose a generalization of the probabilistic voting model in two-candidate elections. We allow the candidates have general von Neumann–Morgenstern utility functions defined over the voting outcomes. We show that the candidates will choose identical policy positions only if the electoral competition game is constant-sum, such as when both candidates are probability-of-win maximizers or vote share maximizers, or for a small set of functions that for each voter define the probability of voting for each candidate, given candidate policy positions. At the same time, a pure-strategy local Nash equilibrium (in which the candidates do not necessarily choose identical positions) exists for a large set of such functions. Hence, if the candidate payoffs are unrestricted, the “mean voter theorem” for probabilistic voting models is shown to hold only for a small set of probability of vote functions. Copyright Springer-Verlag Berlin Heidelberg 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00355-013-0786-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sochwe:v:43:y:2014:i:2:p:429-446
Ordering information: This journal article can be ordered from
http://www.springer. ... c+theory/journal/355
DOI: 10.1007/s00355-013-0786-3
Access Statistics for this article
Social Choice and Welfare is currently edited by Bhaskar Dutta, Marc Fleurbaey, Elizabeth Maggie Penn and Clemens Puppe
More articles in Social Choice and Welfare from Springer, The Society for Social Choice and Welfare Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().