Treatment Choice With Trial Data: Statistical Decision Theory Should Supplant Hypothesis Testing
Charles Manski
The American Statistician, 2019, vol. 73, issue S1, 296-304
Abstract:
A central objective of empirical research on treatment response is to inform treatment choice. Unfortunately, researchers commonly use concepts of statistical inference whose foundations are distant from the problem of treatment choice. It has been particularly common to use hypothesis tests to compare treatments. Wald’s development of statistical decision theory provides a coherent frequentist framework for use of sample data on treatment response to make treatment decisions. A body of recent research applies statistical decision theory to characterize uniformly satisfactory treatment choices, in the sense of maximum loss relative to optimal decisions (also known as maximum regret). This article describes the basic ideas and findings, which provide an appealing practical alternative to use of hypothesis tests. For simplicity, the article focuses on medical treatment with evidence from classical randomized clinical trials. The ideas apply generally, encompassing use of observational data and treatment choice in nonmedical contexts.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1513377 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:s1:p:296-304
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2018.1513377
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().