EconPapers    
Economics at your fingertips  
 

Trial Size for Near-Optimal Choice Between Surveillance and Aggressive Treatment: Reconsidering MSLT-II

Charles Manski and Aleksey Tetenov ()

The American Statistician, 2019, vol. 73, issue S1, 305-311

Abstract: A convention in designing randomized clinical trials has been to choose sample sizes that yield specified statistical power when testing hypotheses about treatment response. Manski and Tetenov recently critiqued this convention and proposed enrollment of sufficiently many subjects to enable near-optimal treatment choices. This article develops a refined version of that analysis applicable to trials comparing aggressive treatment of patients with surveillance. The need for a refined analysis arises because the earlier work assumed that there is only a primary health outcome of interest, without secondary outcomes. An important aspect of choice between surveillance and aggressive treatment is that the latter may have side effects. One should then consider how the primary outcome and side effects jointly determine patient welfare. This requires new analysis of sample design. As a case study, we reconsider a trial comparing nodal observation and lymph node dissection when treating patients with cutaneous melanoma. Using a statistical power calculation, the investigators assigned 971 patients to dissection and 968 to observation. We conclude that assigning 244 patients to each option would yield findings that enable suitably near-optimal treatment choice. Thus, a much smaller sample size would have sufficed to inform clinical practice.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1543617 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:s1:p:305-311

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2018.1543617

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:73:y:2019:i:s1:p:305-311