EconPapers    
Economics at your fingertips  
 

Does Home Health Care Increase the Probability of 30-Day Hospital Readmissions? Interpreting Coefficient Sign Reversals, or Their Absence, in Binary Logistic Regression Analysis

Alecos Papadopoulos and Roland B. Stark

The American Statistician, 2021, vol. 75, issue 2, 173-184

Abstract: Data for 30-day readmission rates in American hospitals often show that patients that receive Home Health Care (HHC) have a higher probability of being readmitted to hospital than those that did not receive such services, but it is expected that when control variables are included in a regression we will obtain a “sign reversal” of the treatment effect. We map the real-world situation to the binary logistic regression model, and we construct a counterfactual probability metric that leads to necessary and sufficient conditions for the sign reversal to occur, conditions that show that logistic regression is an appropriate tool for this research purpose. This metric also permits us to obtain evidence related to the criteria used to assign HHC treatment. We examine seven data samples from different USA hospitals for the period 2011–2017. We find that in all cases the provision of HHC increased the probability of readmission of the treated patients. This casts doubt on the appropriateness of the 30-day readmission rate as an indicator of hospital performance and a criterion for hospital reimbursement, as it is currently used for Medicare patients.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2019.1704873 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:75:y:2021:i:2:p:173-184

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2019.1704873

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:75:y:2021:i:2:p:173-184