Robustness of Inference for One-sample Problem with Correlated Observations
Perla Subbaiah and
George Xia
Journal of Applied Statistics, 2007, vol. 34, issue 4, 471-486
Abstract:
The inference about the population mean based on the standard t-test involves the assumption of normal population as well as independence of the observations. In this paper we examine the robustness of the inference in the presence of correlations among the observations. We consider the simplest correlation structure AR(1) and its impact on the t-test. A modification of the t-test suitable for this structure is suggested, and its effect on the inference is investigated using Monte Carlo simulation.
Keywords: Repeated measurements; AR(1) correlation structure (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701231906 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:4:p:471-486
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760701231906
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().