EconPapers    
Economics at your fingertips  
 

The use of predicted values for item parameters in item response theory models: an application in intelligence tests

Mariagiulia Matteucci, Stefania Mignani and Bernard P. Veldkamp

Journal of Applied Statistics, 2012, vol. 39, issue 12, 2665-2683

Abstract: In testing, item response theory models are widely used in order to estimate item parameters and individual abilities. However, even unidimensional models require a considerable sample size so that all parameters can be estimated precisely. The introduction of empirical prior information about candidates and items might reduce the number of candidates needed for parameter estimation. Using data for IQ measurement, this work shows how empirical information about items can be used effectively for item calibration and in adaptive testing. First, we propose multivariate regression trees to predict the item parameters based on a set of covariates related to the item-solving process. Afterwards, we compare the item parameter estimation when tree-fitted values are included in the estimation or when they are ignored. Model estimation is fully Bayesian, and is conducted via Markov chain Monte Carlo methods. The results are two-fold: (a) in item calibration, it is shown that the introduction of prior information is effective with short test lengths and small sample sizes and (b) in adaptive testing, it is demonstrated that the use of the tree-fitted values instead of the estimated parameters leads to a moderate increase in the test length, but provides a considerable saving of resources.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2012.725034 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:39:y:2012:i:12:p:2665-2683

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2012.725034

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:39:y:2012:i:12:p:2665-2683