EconPapers    
Economics at your fingertips  
 

Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes

Bao Yiqi, Cibele Maria Russo, Vicente G. Cancho and Francisco Louzada

Journal of Applied Statistics, 2016, vol. 43, issue 6, 1027-1060

Abstract: In this paper, we propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest follows the Negative Binomial distribution and the time to event follows a Weibull distribution. Indeed, we introduce the Weibull-Negative-Binomial (WNB) distribution, which can be used in order to model survival data when the hazard rate function is increasing, decreasing and some non-monotonous shaped. Another advantage of the proposed model is that it has some distributions commonly used in lifetime analysis as particular cases. Moreover, the proposed model includes as special cases some of the well-know cure rate models discussed in the literature. We consider a frequentist analysis for parameter estimation of a WNB model with cure rate. Then, we derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. Finally, the methodology is illustrated on a medical data.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1089221 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:6:p:1027-1060

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2015.1089221

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:43:y:2016:i:6:p:1027-1060