Economics at your fingertips  

Inference with three-level prior distributions in quantile regression problems

Rahim Alhamzawi ()

Journal of Applied Statistics, 2017, vol. 44, issue 11, 1947-1959

Abstract: In this paper, we propose a three level hierarchical Bayesian model for variable selection and estimation in quantile regression problems. Specifically, at the first level we consider a zero mean normal priors for the coefficients with unknown variance parameters. At the second level, we specify two different priors for the unknown variance parameters which introduce two different models producing different levels of sparsity. Then, at the third level we suggest joint improper priors for the unknown hyperparameters assuming they are independent. Simulations and Boston Housing data are utilized to compare the performance of our models with six existing models. The results indicate that our models perform good in the simulations and Boston Housing data.

Date: 2017
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1080/02664763.2016.1238051

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

Page updated 2022-05-02
Handle: RePEc:taf:japsta:v:44:y:2017:i:11:p:1947-1959