Bayesian elastic net single index quantile regression
Taha Alshaybawee,
Habshah Midi and
Rahim Alhamzawi ()
Journal of Applied Statistics, 2017, vol. 44, issue 5, 853-871
Abstract:
Single index model conditional quantile regression is proposed in order to overcome the dimensionality problem in nonparametric quantile regression. In the proposed method, the Bayesian elastic net is suggested for single index quantile regression for estimation and variables selection. The Gaussian process prior is considered for unknown link function and a Gibbs sampler algorithm is adopted for posterior inference. The results of the simulation studies and numerical example indicate that our propose method, BENSIQReg, offers substantial improvements over two existing methods, SIQReg and BSIQReg. The BENSIQReg has consistently show a good convergent property, has the least value of median of mean absolute deviations and smallest standard deviations, compared to the other two methods.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2016.1189515 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:44:y:2017:i:5:p:853-871
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2016.1189515
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().