Bayesian quantile regression for ordinal longitudinal data
Rahim Alhamzawi () and
Haithem Taha Mohammad Ali
Journal of Applied Statistics, 2018, vol. 45, issue 5, 815-828
Abstract:
Since the pioneering work by Koenker and Bassett [27], quantile regression models and its applications have become increasingly popular and important for research in many areas. In this paper, a random effects ordinal quantile regression model is proposed for analysis of longitudinal data with ordinal outcome of interest. An efficient Gibbs sampling algorithm was derived for fitting the model to the data based on a location-scale mixture representation of the skewed double-exponential distribution. The proposed approach is illustrated using simulated data and a real data example. This is the first work to discuss quantile regression for analysis of longitudinal data with ordinal outcome.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2017.1315059 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:45:y:2018:i:5:p:815-828
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2017.1315059
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().