EconPapers    
Economics at your fingertips  
 

Kalman filtering with censored measurements

Kostas Loumponias and George Tsaklidis

Journal of Applied Statistics, 2022, vol. 49, issue 2, 317-335

Abstract: This paper concerns Kalman filtering when the measurements of the process are censored. The censored measurements are addressed by the Tobit model of Type I and are one-dimensional with two censoring limits, while the (hidden) state vectors are multidimensional. For this model, Bayesian estimates for the state vectors are provided through a recursive algorithm of Kalman filtering type. Experiments are presented to illustrate the effectiveness and applicability of the algorithm. The experiments show that the proposed method outperforms other filtering methodologies in minimizing the computational cost as well as the overall Root Mean Square Error (RMSE) for synthetic and real data sets.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1810645 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:2:p:317-335

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2020.1810645

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:49:y:2022:i:2:p:317-335