EconPapers    
Economics at your fingertips  
 

Evaluating the maximum MSE of mean estimators with missing data

Charles Manski and Max Tabord-Meehan

Stata Journal, 2017, vol. 17, issue 3, 723-735

Abstract: In this article, we present the wald mse command, which computes the maximum mean squared error of a user-specified point estimator of the mean for a population of interest in the presence of missing data. As pointed out by Manski (1989, Journal of Human Resources 24: 343–360; 2007, Journal of Econometrics 139: 105–115), the presence of missing data results in the loss of point identification of the mean unless one is willing to make strong assumptions about the nature of the missing data. Despite this, decision makers may be interested in reporting a single number as their estimate of the mean as opposed to an estimate of the identified set. It is not obvious which estimator of the mean is best suited to this task, and there may not exist a universally best choice in all settings. To evaluate the performance of a given point estimator of the mean, wald mse allows the decision maker to compute the maximum mean squared error of an arbitrary estimator under a flexible specification of the missing-data process.

Keywords: wald mse; maximum mean squared error (search for similar items in EconPapers)
Date: 2017
Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj17-3/st0494/
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.stata-journal.com/article.html?article=st0494 link to article purchase

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:tsj:stataj:y:17:y:2017:i:3:p:723-735

Ordering information: This journal article can be ordered from
http://www.stata-journal.com/subscription.html

Access Statistics for this article

Stata Journal is currently edited by Nicholas J. Cox and Stephen P. Jenkins

More articles in Stata Journal from StataCorp LLC
Bibliographic data for series maintained by Christopher F. Baum () and Lisa Gilmore ().

 
Page updated 2025-03-20
Handle: RePEc:tsj:stataj:y:17:y:2017:i:3:p:723-735