Subspace shrinkage in conjugate Bayesian vector autoregressions
Florian Huber and
Gary Koop
Journal of Applied Econometrics, 2023, vol. 38, issue 4, 556-576
Abstract:
Macroeconomists using large datasets often face the choice of working with either a large vector autoregression (VAR) or a factor model. In this paper, we develop a conjugate Bayesian VAR with a subspace shrinkage prior that combines the two. This prior shrinks towards the subspace which is defined by a factor model. Our approach allows for estimating the strength of the shrinkage and the number of factors. After establishing the theoretical properties of our prior, we show that it successfully detects the number of factors in simulations and that it leads to forecast improvements using US macroeconomic data.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.2966
Related works:
Working Paper: Subspace Shrinkage in Conjugate Bayesian Vector Autoregressions (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:38:y:2023:i:4:p:556-576
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().