EconPapers    
Economics at your fingertips  
 

Subspace Shrinkage in Conjugate Bayesian Vector Autoregressions

Florian Huber and Gary Koop

Papers from arXiv.org

Abstract: Macroeconomists using large datasets often face the choice of working with either a large Vector Autoregression (VAR) or a factor model. In this paper, we develop methods for combining the two using a subspace shrinkage prior. Subspace priors shrink towards a class of functions rather than directly forcing the parameters of a model towards some pre-specified location. We develop a conjugate VAR prior which shrinks towards the subspace which is defined by a factor model. Our approach allows for estimating the strength of the shrinkage as well as the number of factors. After establishing the theoretical properties of our proposed prior, we carry out simulations and apply it to US macroeconomic data. Using simulations we show that our framework successfully detects the number of factors. In a forecasting exercise involving a large macroeconomic data set we find that combining VARs with factor models using our prior can lead to forecast improvements.

Date: 2021-07
New Economics Papers: this item is included in nep-dcm, nep-ecm, nep-ets and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2107.07804 Latest version (application/pdf)

Related works:
Journal Article: Subspace shrinkage in conjugate Bayesian vector autoregressions (2023) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2107.07804

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2107.07804