Decentralization estimators for instrumental variable quantile regression models
Hiroaki Kaido and
Kaspar Wüthrich
Quantitative Economics, 2021, vol. 12, issue 2, 443-475
Abstract:
The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen (2005)) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the nonsmoothness and nonconvexity of the IVQR GMM objective function. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression subproblems which are convex and can be solved efficiently. This reformulation leads to new identification results and to fast, easy to implement, and tuning‐free estimators that do not require the availability of high‐level “black box” optimization routines.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.3982/QE1440
Related works:
Working Paper: Decentralization estimators for instrumental variable quantile regression models (2021) 
Working Paper: Decentralization Estimators for Instrumental Variable Quantile Regression Models (2020) 
Working Paper: Decentralization estimators for instrumental variable quantile regression models (2019) 
Working Paper: Decentralization estimators for instrumental variable quantile regression models (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:12:y:2021:i:2:p:443-475
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().