EconPapers    
Economics at your fingertips  
 

Decentralization Estimators for Instrumental Variable Quantile Regression Models

Hiroaki Kaido () and Kaspar Wuthrich

Papers from arXiv.org

Abstract: The instrumental variable quantile regression (IVQR) model of Chernozhukov and Hansen (2005,2006) is a flexible and powerful tool for evaluating the impact of endogenous covariates on the whole distribution of the outcome of interest. Estimation, however, is computationally burdensome because the GMM objective function is non-smooth and non-convex. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression sub-problems, which are convex and can be solved efficiently. This allows for reformulating the original estimation problem as the problem of finding the fixed point of a low dimensional map. This reformulation leads to new identification results and, most importantly, to practical, easy to implement, and computationally tractable estimators. We explore estimation algorithms based on the contraction mapping theorem and algorithms based on root-finding methods. We prove consistency and asymptotic normality of our estimators and establish the validity of a bootstrap procedure for estimating the limiting laws. Monte Carlo simulations support the estimator's enhanced computational tractability and demonstrate desirable finite sample properties.

New Economics Papers: this item is included in nep-ecm
Date: 2018-12
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1812.10925 Latest version (application/pdf)

Related works:
Working Paper: Decentralization estimators for instrumental variable quantile regression models (2018) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1812.10925

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2019-05-01
Handle: RePEc:arx:papers:1812.10925