Interpreting Economic Complexity
Penny Mealy,
J. Farmer and
Alexander Teytelboym
Papers from arXiv.org
Abstract:
Two network measures known as the Economic Complexity Index (ECI) and Product Complexity Index (PCI) have provided important insights into patterns of economic development. We show that the ECI and PCI are equivalent to a spectral clustering algorithm that partitions a similarity graph into two parts. The measures are also related to various dimensionality reduction methods and can be interpreted as vectors that determine distances between nodes based on their similarity. Our results shed a new light on the ECI's empirical success in explaining cross-country differences in GDP/capita and economic growth, which is often linked to the diversity of country export baskets. In fact, countries with high (low) ECI tend to specialize in high (low) PCI products. We also find that the ECI and PCI uncover economically informative specialization patterns across US states and UK regions.
Date: 2017-11, Revised 2018-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/1711.08245 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1711.08245
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().