EconPapers    
Economics at your fingertips  
 

Deep Neural Networks for Estimation and Inference

Max Farrell, Tengyuan Liang and Sanjog Misra

Papers from arXiv.org

Abstract: We study deep neural networks and their use in semiparametric inference. We establish novel rates of convergence for deep feedforward neural nets. Our new rates are sufficiently fast (in some cases minimax optimal) to allow us to establish valid second-step inference after first-step estimation with deep learning, a result also new to the literature. Our estimation rates and semiparametric inference results handle the current standard architecture: fully connected feedforward neural networks (multi-layer perceptrons), with the now-common rectified linear unit activation function and a depth explicitly diverging with the sample size. We discuss other architectures as well, including fixed-width, very deep networks. We establish nonasymptotic bounds for these deep nets for a general class of nonparametric regression-type loss functions, which includes as special cases least squares, logistic regression, and other generalized linear models. We then apply our theory to develop semiparametric inference, focusing on causal parameters for concreteness, such as treatment effects, expected welfare, and decomposition effects. Inference in many other semiparametric contexts can be readily obtained. We demonstrate the effectiveness of deep learning with a Monte Carlo analysis and an empirical application to direct mail marketing.

Date: 2018-09, Revised 2019-09
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Published in Econometrica, vol 89, no 1, 181-213, 2021

Downloads: (external link)
http://arxiv.org/pdf/1809.09953 Latest version (application/pdf)

Related works:
Journal Article: Deep Neural Networks for Estimation and Inference (2021) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.09953

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-29
Handle: RePEc:arx:papers:1809.09953