The Model Selection Curse
Kfir Eliaz and
Ran Spiegler ()
Papers from arXiv.org
Abstract:
A "statistician" takes an action on behalf of an agent, based on the agent's self-reported personal data and a sample involving other people. The action that he takes is an estimated function of the agent's report. The estimation procedure involves model selection. We ask the following question: Is truth-telling optimal for the agent given the statistician's procedure? We analyze this question in the context of a simple example that highlights the role of model selection. We suggest that our simple exercise may have implications for the broader issue of human interaction with "machine learning" algorithms.
Date: 2018-10
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1810.02888 Latest version (application/pdf)
Related works:
Journal Article: The Model Selection Curse (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1810.02888
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().