Uniform inference for value functions
Sergio Firpo,
Antonio Galvao and
Thomas Parker
Papers from arXiv.org
Abstract:
We propose a method to conduct uniform inference for the (optimal) value function, that is, the function that results from optimizing an objective function marginally over one of its arguments. Marginal optimization is not Hadamard differentiable (that is, compactly differentiable) as a map between the spaces of objective and value functions, which is problematic because standard inference methods for nonlinear maps usually rely on Hadamard differentiability. However, we show that the map from objective function to an $L_p$ functional of a value function, for $1 \leq p \leq \infty$, are Hadamard directionally differentiable. As a result, we establish consistency and weak convergence of nonparametric plug-in estimates of Cram\'er-von Mises and Kolmogorov-Smirnov test statistics applied to value functions. For practical inference, we develop detailed resampling techniques that combine a bootstrap procedure with estimates of the directional derivatives. In addition, we establish local size control of tests which use the resampling procedure. Monte Carlo simulations assess the finite-sample properties of the proposed methods and show accurate empirical size and nontrivial power of the procedures. Finally, we apply our methods to the evaluation of a job training program using bounds for the distribution function of treatment effects.
Date: 2019-11, Revised 2022-10
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1911.10215 Latest version (application/pdf)
Related works:
Journal Article: Uniform inference for value functions (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1911.10215
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().