Adaptive Combinatorial Allocation
Maximilian Kasy and
Alexander Teytelboym
Papers from arXiv.org
Abstract:
We consider settings where an allocation has to be chosen repeatedly, returns are unknown but can be learned, and decisions are subject to constraints. Our model covers two-sided and one-sided matching, even with complex constraints. We propose an approach based on Thompson sampling. Our main result is a prior-independent finite-sample bound on the expected regret for this algorithm. Although the number of allocations grows exponentially in the number of participants, the bound does not depend on this number. We illustrate the performance of our algorithm using data on refugee resettlement in the United States.
Date: 2020-11
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2011.02330 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2011.02330
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().