EconPapers    
Economics at your fingertips  
 

Close Enough? A Large-Scale Exploration of Non-Experimental Approaches to Advertising Measurement

Brett R. Gordon, Robert Moakler and Florian Zettelmeyer

Papers from arXiv.org

Abstract: Despite their popularity, randomized controlled trials (RCTs) are not always available for the purposes of advertising measurement. Non-experimental data is thus required. However, Facebook and other ad platforms use complex and evolving processes to select ads for users. Therefore, successful non-experimental approaches need to "undo" this selection. We analyze 663 large-scale experiments at Facebook to investigate whether this is possible with the data typically logged at large ad platforms. With access to over 5,000 user-level features, these data are richer than what most advertisers or their measurement partners can access. We investigate how accurately two non-experimental methods -- double/debiased machine learning (DML) and stratified propensity score matching (SPSM) -- can recover the experimental effects. Although DML performs better than SPSM, neither method performs well, even using flexible deep learning models to implement the propensity and outcome models. The median RCT lifts are 29%, 18%, and 5% for the upper, middle, and lower funnel outcomes, respectively. Using DML (SPSM), the median lift by funnel is 83% (173%), 58% (176%), and 24% (64%), respectively, indicating significant relative measurement errors. We further characterize the circumstances under which each method performs comparatively better. Overall, despite having access to large-scale experiments and rich user-level data, we are unable to reliably estimate an ad campaign's causal effect.

Date: 2022-01, Revised 2022-10
New Economics Papers: this item is included in nep-big, nep-cmp and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://arxiv.org/pdf/2201.07055 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2201.07055

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2201.07055