Uncertainty-Informed Renewable Energy Scheduling: A Scalable Bilevel Framework
Dongwei Zhao,
Vladimir Dvorkin,
Stefanos Delikaraoglou,
Alberto J. Lamadrid L. and
Audun Botterud
Papers from arXiv.org
Abstract:
This work proposes an uncertainty-informed bid adjustment framework for integrating variable renewable energy sources (VRES) into electricity markets. This framework adopts a bilevel model to compute the optimal VRES day-ahead bids. It aims to minimize the expected system cost across day-ahead and real-time stages and approximate the cost efficiency of the stochastic market design. However, solving the bilevel optimization problem is computationally challenging for large-scale systems. To overcome this challenge, we introduce a novel technique based on strong duality and McCormick envelopes, which relaxes the problem to a linear program, enabling large-scale applications. The proposed bilevel framework is applied to the 1576-bus NYISO system and benchmarked against a myopic strategy, where the VRES bid is the mean value of the probabilistic power forecast. Results demonstrate that, under high VRES penetration levels (e.g., 40%), our framework can significantly reduce system costs and market-price volatility, by optimizing VRES quantities efficiently in the day-ahead market. Furthermore, we find that when transmission capacity increases, the proposed bilevel model will still reduce the system cost, whereas the myopic strategy may incur a much higher cost due to over-scheduling of VRES in the day-ahead market and the lack of flexible conventional generators in real time.
Date: 2023-12
New Economics Papers: this item is included in nep-ene
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.03868 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.03868
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().