EconPapers    
Economics at your fingertips  
 

Bayesian modelling of VAR precision matrices using stochastic block networks

Florian Huber, Gary Koop, Massimiliano Marcellino and Tobias Scheckel

Papers from arXiv.org

Abstract: Commonly used priors for Vector Autoregressions (VARs) induce shrinkage on the autoregressive coefficients. Introducing shrinkage on the error covariance matrix is sometimes done but, in the vast majority of cases, without considering the network structure of the shocks and by placing the prior on the lower Cholesky factor of the precision matrix. In this paper, we propose a prior on the VAR error precision matrix directly. Our prior, which resembles a standard spike and slab prior, models variable inclusion probabilities through a stochastic block model that clusters shocks into groups. Within groups, the probability of having relations across group members is higher (inducing less sparsity) whereas relations across groups imply a lower probability that members of each group are conditionally related. We show in simulations that our approach recovers the true network structure well. Using a US macroeconomic data set, we illustrate how our approach can be used to cluster shocks together and that this feature leads to improved density forecasts.

Date: 2024-07
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2407.16349 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.16349

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2407.16349