EconPapers    
Economics at your fingertips  
 

AI's Social Forcefield: Reshaping Distributed Cognition in Human-AI Teams

Christoph Riedl, Saiph Savage and Josie Zvelebilova

Papers from arXiv.org

Abstract: AI is not only a neutral tool in team settings; it actively reshapes the social and cognitive fabric of collaboration. We advance a unified framework of alignment in distributed cognition in human-AI teams -- a process through which linguistic, cognitive, and social coordination emerge as human and AI agents co-construct a shared representational space. Across two studies, we show that exposure to AI-generated language shapes not only how people speak, but also how they think, what they attend to, and how they relate to each other. Together, these findings reveal how AI participation reorganizes the distributed cognitive architecture of teams: AI systems function as implicit social forcefields. Our findings highlight the double-edged impact of AI: the same mechanisms that enable efficient collaboration can also erode epistemic diversity and undermine natural alignment processes. We argue for rethinking AI in teams as a socially influential actor and call for new design paradigms that foreground transparency, controllability, and group-level dynamics to foster responsible, productive human-AI collaboration.

Date: 2024-07, Revised 2025-10
New Economics Papers: this item is included in nep-ain and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2407.17489 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.17489

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-25
Handle: RePEc:arx:papers:2407.17489