Forecasting Macroeconomic Dynamics using a Calibrated Data-Driven Agent-based Model
Samuel Wiese,
Jagoda Kaszowska-Mojsa,
Joel Dyer,
Jose Moran,
Marco Pangallo,
François Lafond,
John Muellbauer,
Anisoara Calinescu and
J. Doyne Farmer
Papers from arXiv.org
Abstract:
In the last few years, economic agent-based models have made the transition from qualitative models calibrated to match stylised facts to quantitative models for time series forecasting, and in some cases, their predictions have performed as well or better than those of standard models (see, e.g. Poledna et al. (2023a); Hommes et al. (2022); Pichler et al. (2022)). Here, we build on the model of Poledna et al., adding several new features such as housing markets, realistic synthetic populations of individuals with income, wealth and consumption heterogeneity, enhanced behavioural rules and market mechanisms, and an enhanced credit market. We calibrate our model for all 38 OECD member countries using state-of-the-art approximate Bayesian inference methods and test it by making out-of-sample forecasts. It outperforms both the Poledna and AR(1) time series models by a highly statistically significant margin. Our model is built within a platform we have developed, making it easy to build, run, and evaluate alternative models, which we hope will encourage future work in this area.
Date: 2024-09
New Economics Papers: this item is included in nep-hme
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2409.18760 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.18760
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().