SAE-FiRE: Enhancing Earnings Surprise Predictions Through Sparse Autoencoder Feature Selection
Huopu Zhang,
Yanguang Liu and
Mengnan Du
Papers from arXiv.org
Abstract:
Predicting earnings surprises through the analysis of earnings conference call transcripts has attracted increasing attention from the financial research community. Conference calls serve as critical communication channels between company executives, analysts, and shareholders, offering valuable forward-looking information. However, these transcripts present significant analytical challenges, typically containing over 5,000 words with substantial redundancy and industry-specific terminology that creates obstacles for language models. In this work, we propose the Sparse Autoencoder for Financial Representation Enhancement (SAE-FiRE) framework to address these limitations by extracting key information while eliminating redundancy. SAE-FiRE employs Sparse Autoencoders (SAEs) to efficiently identify patterns and filter out noises, and focusing specifically on capturing nuanced financial signals that have predictive power for earnings surprises. Experimental results indicate that the proposed method can significantly outperform comparing baselines.
Date: 2025-05
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.14420 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.14420
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().