A Nonparametric Approach to Augmenting a Bayesian VAR with Nonlinear Factors
Todd Clark,
Florian Huber and
Gary Koop
Papers from arXiv.org
Abstract:
This paper proposes a Vector Autoregression augmented with nonlinear factors that are modeled nonparametrically using regression trees. There are four main advantages of our model. First, modeling potential nonlinearities nonparametrically lessens the risk of mis-specification. Second, the use of factor methods ensures that departures from linearity are modeled parsimoniously. In particular, they exhibit functional pooling where a small number of nonlinear factors are used to model common nonlinearities across variables. Third, Bayesian computation using MCMC is straightforward even in very high dimensional models, allowing for efficient, equation by equation estimation, thus avoiding computational bottlenecks that arise in popular alternatives such as the time varying parameter VAR. Fourth, existing methods for identifying structural economic shocks in linear factor models can be adapted for the nonlinear case in a straightforward fashion using our model. Exercises involving artificial and macroeconomic data illustrate the properties of our model and its usefulness for forecasting and structural economic analysis.
Date: 2025-08
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2508.13972 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2508.13972
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().