Denoising Complex Covariance Matrices with Hybrid ResNet and Random Matrix Theory: Cryptocurrency Portfolio Applications
Andres Garcia-Medina
Papers from arXiv.org
Abstract:
Covariance matrices estimated from short, noisy, and non-Gaussian financial time series are notoriously unstable. Empirical evidence suggests that such covariance structures often exhibit power-law scaling, reflecting complex, hierarchical interactions among assets. Motivated by this observation, we introduce a power-law covariance model to characterize collective market dynamics and propose a hybrid estimator that integrates Random Matrix Theory (RMT) with deep Residual Neural Networks (ResNets). The RMT component regularizes the eigenvalue spectrum in high-dimensional noisy settings, while the ResNet learns data-driven corrections that recover latent structural dependencies encoded in the eigenvectors. Monte Carlo simulations show that the proposed ResNet-based estimators consistently minimize both Frobenius and minimum-variance losses across a range of population covariance models. Empirical experiments on 89 cryptocurrencies over the period 2020-2025, using a training window ending at the local Bitcoin peak in November 2021 and testing through the subsequent bear market, demonstrate that a two-step estimator combining hierarchical filtering with ResNet corrections produces the most profitable and well-balanced portfolios, remaining robust across market regime shifts. Beyond finance, the proposed hybrid framework applies broadly to high-dimensional systems described by low-rank deformations of Wishart ensembles, where incorporating eigenvector information enables the detection of multiscale and hierarchical structure that is inaccessible to purely eigenvalue-based methods.
Date: 2025-10, Revised 2025-12
New Economics Papers: this item is included in nep-ecm and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.19130 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.19130
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().