Fully Modified Least Squares and Vector Autoregression
Peter Phillips
No 1047, Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University
Abstract:
Fully modified least squares (FM-OLS) regression was originally designed in work by Phillips and Hansen (1990) to provide optimal estimates of cointegrating regressions. The method modifies least squares to account for serial correlation effects and for the endogeneity in the regressors that results from the existence of a cointegrating relationship. This paper provides a general framework which makes it possible to study the asymptotic behavior of FM-OLS in models with full rank I(1) regressors, models with I(1) and I(0) regressors, models with unit roots, and models with only stationary regressors. This framework enables us to consider the use of FM regression in the context of vector autoregressions (VAR's) with some unit roots and some cointegrating relations. The resulting FM-VAR regressions are shown to have some interesting properties. For example, when there is some cointegration in the system, FM-VAR estimation has a limit theory that is normal for all of the stationary coefficients and mixed normal for all of the nonstationary coefficients. Thus, there are no unit root limit distributions even in the case of the unit root coefficient submatrix (i.e., I_{n-r}, for an n-dimensional VAR with r cointegrating vectors). Moreover, optimal estimation of the cointegration space is attained in FM-VAR regression without prior knowledge of the number of unit roots in the system, without pretesting to determine the dimension of the cointegration space and without the use of restricted regression techniques like reduced rank regression. The paper also develops an asymptotic theory for inference based on FM-OLS and FM-VAR regression. The limit theory for Wald tests that rely on the FM estimator is shown to involve a linear combination of independent chi-squared variates. This limit distribution is bounded above by the conventional chi-squared distribution with degrees of freedom equal to the number of restrictions. Thus, conventional critical values can be used to construct valid (but conservative) asymptotic tests in quite general FM time series regressions. This theory applies to causality testing in VAR's and is therefore potentially useful in empirical applications.
Keywords: Causality testing; cointegration; fully modified regression; fully modified vector autoregression; hyperconsistency; long-run covariance matrix; one-sided long-run covariance matrix; some unit roots (search for similar items in EconPapers)
Pages: 79 pages
Date: 1993-05
Note: CFP 905.
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Published in Econometrica (September 1995), 63(5): 1023-1078
Downloads: (external link)
https://cowles.yale.edu/sites/default/files/files/pub/d10/d1047.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
Journal Article: Fully Modified Least Squares and Vector Autoregression (1995) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cwl:cwldpp:1047
Ordering information: This working paper can be ordered from
Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA
The price is None.
Access Statistics for this paper
More papers in Cowles Foundation Discussion Papers from Cowles Foundation for Research in Economics, Yale University Yale University, Box 208281, New Haven, CT 06520-8281 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Brittany Ladd ().