Model confidence sets for forecasting models
Peter Hansen,
Asger Lunde () and
James Nason
No 2005-07, FRB Atlanta Working Paper from Federal Reserve Bank of Atlanta
Abstract:
The paper introduces the model confidence set (MCS) and applies it to the selection of forecasting models. An MCS is a set of models that is constructed so that it will contain the ?best? forecasting model, given a level of confidence. Thus, an MCS is analogous to a confidence interval for a parameter. The MCS acknowledges the limitations of the data so that uninformative data yield an MCS with many models, whereas informative data yield an MCS with only a few models. We revisit the empirical application in Stock and Watson (1999) and apply the MCS procedure to their set of inflation forecasts. In the first pre-1984 subsample we obtain an MCS that contains only a few models, notably versions of the Solow-Gordon Phillips curve. On the other hand, the second post-1984 subsample contains little information and results in a large MCS. Yet, the random walk forecast is not contained in the MCS for either of the samples. This outcome shows that the random walk forecast is inferior to inflation forecasts based on Phillips curve-like relationships.
Date: 2005
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-fin
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
https://www.atlantafed.org/-/media/documents/resea ... /wp/2005/wp0507a.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fip:fedawp:2005-07
Ordering information: This working paper can be ordered from
Access Statistics for this paper
More papers in FRB Atlanta Working Paper from Federal Reserve Bank of Atlanta Contact information at EDIRC.
Bibliographic data for series maintained by Rob Sarwark ().