Incentive Compatible Estimators
Kfir Eliaz and
Ran Spiegler ()
No 12804, CEPR Discussion Papers from C.E.P.R. Discussion Papers
Abstract:
We study a model in which a "statistician" takes an action on behalf of an agent, based on a random sample involving other people. The statistician follows a penalized regression procedure: the action that he takes is the dependent variable's estimated value given the agent's disclosed personal characteristics. We ask the following question: Is truth-telling an optimal disclosure strategy for the agent, given the statistician's procedure? We discuss possible implications of our exercise for the growing reliance on "machine learning" methods that involve explicit variable selection.
Date: 2018-03
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://cepr.org/publications/DP12804 (application/pdf)
CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
Related works:
Journal Article: On incentive-compatible estimators (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cpr:ceprdp:12804
Ordering information: This working paper can be ordered from
https://cepr.org/publications/DP12804
Access Statistics for this paper
More papers in CEPR Discussion Papers from C.E.P.R. Discussion Papers Centre for Economic Policy Research, 33 Great Sutton Street, London EC1V 0DX.
Bibliographic data for series maintained by ().