Test & Roll: Profit-Maximizing A/B Tests
Elea Feit and
Ron Berman
Marketing Science, 2019, vol. 38, issue 6, 1038-1058
Abstract:
Marketers often use A/B testing as a tool to compare marketing treatments in a test stage and then deploy the better-performing treatment to the remainder of the consumer population. Whereas these tests have traditionally been analyzed using hypothesis testing, we reframe them as an explicit trade-off between the opportunity cost of the test (where some customers receive a suboptimal treatment) and the potential losses associated with deploying a suboptimal treatment to the remainder of the population. We derive a closed-form expression for the profit-maximizing test size and show that it is substantially smaller than typically recommended for a hypothesis test, particularly when the response is noisy or when the total population is small. The common practice of using small holdout groups can be rationalized by asymmetric priors. The proposed test design achieves nearly the same expected regret as the flexible yet harder-to-implement multi-armed bandit under a wide range of conditions. We demonstrate the benefits of the method in three different marketing contexts—website design, display advertising, and catalog tests—in which we estimate priors from past data. In all three cases, the optimal sample sizes are substantially smaller than for a traditional hypothesis test, resulting in higher profit.
Keywords: A/B testing; randomized controlled trial; marketing experiments; Bayesian decision theory; sample size (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1287/mksc.2019.1194 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormksc:v:38:y:2019:i:6:p:1038-1058
Access Statistics for this article
More articles in Marketing Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().