EconPapers    
Economics at your fingertips  
 

Compromise in combinatorial vote

Hayrullah Dindar and Jean Lainé

Post-Print from HAL

Abstract: We consider collective choice problems where the set of social outcomes is a Cartesian product of finitely many finite sets. Each individual is assigned a two-level preference, defined as a pair involving a vector of strict rankings of elements in each of the sets and a strict ranking of social outcomes. A voting rule is called (resp. weakly) product stable at some two-level preference profile if every (resp. at least one) outcome formed by separate coordinate-wise choices is also an outcome of the rule applied to preferences over social outcomes. We investigate the (weak) product stability for the specific class of compromise solutions involving q-approval rules, where q lies between 1 and the number I of voters. Given a finite set X and a profile of I linear orders over X, a q-approval rule selects elements of X that gathers the largest support above q at the highest rank in the profile. Well-known q-approval rules are the Fallback Bargaining solution (q=I) and the Majoritarian Compromise (q=⌈I2⌉). We assume that coordinate-wise rankings and rankings of social outcomes are related in a neutral way, and we investigate the existence of neutral two-level preference domains that ensure the weak product stability of q-approval rules. We show that no such domain exists unless either q=I or very special cases prevail. Moreover, we characterize the neutral two-level preference domains over which the Fallback Bargaining solution is weakly product stable.

Date: 2022-02-15
References: Add references at CitEc
Citations:

Published in Social Choice and Welfare, 2022, ⟨10.1007/s00355-022-01387-6⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Journal Article: Compromise in combinatorial vote (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03576075

DOI: 10.1007/s00355-022-01387-6

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-22
Handle: RePEc:hal:journl:hal-03576075