Environmetrics
2012 - 2025
From John Wiley & Sons, Ltd. Bibliographic data for series maintained by Wiley Content Delivery (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 31, issue 8, 2020
- Detecting British Columbia coastal rainfall patterns by clustering Gaussian processes

- F. Paton and P.D. McNicholas
- Bayesian nonparametric monotone regression

- Ander Wilson, Jessica Tryner, Christian L'Orange and John Volckens
- Quantifying the impact of the modifiable areal unit problem when estimating the health effects of air pollution

- Duncan Lee, Chris Robertson, Colin Ramsay and Kate Pyper
- A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA

- C. Forlani, S. Bhatt, M. Cameletti, E. Krainski and M. Blangiardo
- Functional estimation of diversity profiles

- Francesca Fortuna, Stefano Antonio Gattone and Tonio Di Battista
Volume 31, issue 7, 2020
- Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering

- Leonardo Padilla, Bernado Lagos‐Álvarez, Jorge Mateu and Emilio Porcu
- A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources

- Felipe Tagle, Marc G. Genton, Andrew Yip, Suleiman Mostamandi, Georgiy Stenchikov and Stefano Castruccio
- Ensemble forecasting of the Zika space‐time spread with topological data analysis

- Marwah Soliman, Vyacheslav Lyubchich and Yulia R. Gel
- An extended and unified modeling framework for benchmark dose estimation for both continuous and binary data

- Marc Aerts, Matthew W. Wheeler and José Cortiñas Abrahantes
- On modeling positive continuous data with spatiotemporal dependence

- Moreno Bevilacqua, Christian Caamaño‐Carrillo and Carlo Gaetan
- Discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources

- Adelchi Azzalini
- Discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources

- Andrew Zammit‐Mangion
- Discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources

- Sándor Baran
- Discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources

- Emilio Porcu, Jonas Rysgaard and Valerie Eveloy
- Rejoinder to the discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources

- Felipe Tagle, Marc G. Genton, Andrew Yip, Suleiman Mostamandi, Georgiy Stenchikov and Stefano Castruccio
Volume 31, issue 6, 2020
- Bayesian estimation and model selection of a multivariate smooth transition autoregressive model

- Glen Livingston and Darfiana Nur
- A lattice and random intermediate point sampling design for animal movement

- Elizabeth Eisenhauer and Ephraim Hanks
- Incorporating covariate information in the covariance structure of misaligned spatial data

- Esmail Yarali and Firoozeh Rivaz
- A sample coordination method to monitor totals of environmental variables

- Xin Zhao and Anton Grafström
- Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation

- Ashton Wiens, Douglas Nychka and William Kleiber
Volume 31, issue 5, 2020
- Predicting extreme surges from sparse data using a copula‐based hierarchical Bayesian spatial model

- N. Beck, C. Genest, J. Jalbert and M. Mailhot
- Modeling the duration and size of extended attack wildfires as dependent outcomes

- Dexen DZ. Xi, C.B. Dean and Stephen W. Taylor
- Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland

- John O'Sullivan, Conor Sweeney and Andrew C. Parnell
- Flexible covariate representations for extremes

- E. Zanini, E. Eastoe, M. J. Jones, D. Randell and P. Jonathan
- Heatwave duration: Characterizations using probabilistic inference

- Sohini Raha and Sujit K. Ghosh
Volume 31, issue 4, 2020
- Bayesian spatial analysis of hardwood tree counts in forests via MCMC

- Reihaneh Entezari, Patrick E. Brown and Jeffrey S. Rosenthal
- Modeling sea‐level processes on the U.S. Atlantic Coast

- Candace Berrett, William F. Christensen, Stephan R. Sain, Nathan Sandholtz, David W. Coats, Claudia Tebaldi and Hedibert F. Lopes
- Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields

- Unn Dahlén, Johan Lindström and Marko Scholze
- A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity

- Veronika Římalová, Alessandra Menafoglio, Alessia Pini, Vilém Pechanec and Eva Fišerová
- Hidden Markov random field models applied to color homogeneity evaluation in dyed textile images

- Victor Freguglia, Nancy L. Garcia and Juliano L. Bicas
- Probabilistic predictive principal component analysis for spatially misaligned and high‐dimensional air pollution data with missing observations

- Phuong T. Vu, Timothy V. Larson and Adam A. Szpiro
Volume 31, issue 3, 2020
- A multivariate spatial skew‐t process for joint modeling of extreme precipitation indexes

- Arnab Hazra, Brian J. Reich and Ana‐Maria Staicu
- Estimating population size with imperfect detection using a parametric bootstrap

- Lisa Madsen, Dan Dalthorp, Manuela Maria Patrizia Huso and Andy Aderman
- Nonlinear reaction–diffusion process models improve inference for population dynamics

- Xinyi Lu, Perry J. Williams, Mevin B. Hooten, James A. Powell, Jamie N. Womble and Michael R. Bower
- Space–time trends and dependence of precipitation extremes in North‐Western Germany

- R. Cabral, A. Ferreira and P. Friederichs
- Bayesian inference for finite populations under spatial process settings

- Alec M. Chan‐Golston, Sudipto Banerjee and Mark S. Handcock
- Goodness‐of‐fit tests for βARMA hydrological time series modeling

- Vinícius T. Scher, Francisco Cribari‐Neto, Guilherme Pumi and Fábio M. Bayer
Volume 31, issue 2, 2020
- Model‐based clustering for noisy longitudinal circular data, with application to animal movement

- M. Ranalli and A. Maruotti
- Spatial cluster detection of regression coefficients in a mixed‐effects model

- Junho Lee, Ying Sun and Howard H. Chang
- Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount

- P. Tencaliec, A.‐C. Favre, P. Naveau, C. Prieur and G. Nicolet
- Spatio‐Temporal data fusion for massive sea surface temperature data from MODIS and AMSR‐E instruments

- Pulong Ma and Emily L. Kang
- Investigating the association between late spring Gulf of Mexico sea surface temperatures and U.S. Gulf Coast precipitation extremes with focus on Hurricane Harvey

- Brook T. Russell, Mark D. Risser, Richard L. Smith and Kenneth E. Kunkel
- Bayesian time‐varying quantile regression to extremes

- Fernando Ferraz Do Nascimento and Marcelo Bourguignon
- Spatio‐temporal classification in point patterns under the presence of clutter

- Marianna Siino, Francisco J. Rodríguez‐Cortés, Jorge Mateu and Giada Adelfio
Volume 31, issue 1, 2020
- Considering long‐memory when testing for changepoints in surface temperature: A classification approach based on the time‐varying spectrum

- Claudie Beaulieu, Rebecca Killick, David Ireland and Ben Norwood
- Changepoint analysis of Klementinum temperature series

- D. Jarušková and J. Antoch
- A nonparametric approach to detecting changes in variance in locally stationary time series

- J.‐L. Chapman, I. A. Eckley and R. Killick
- A conversation with Ian MacNeill

- Venkata K. Jandhyala and Elena N. Naumova
- Trend assessment for daily snow depths with changepoint considerations

- J. Lee, R. Lund, J. Woody and Y. Xu
- A data‐driven approach to detecting change points in linear regression models

- Vyacheslav Lyubchich, Tatiana V. Lebedeva and Jeremy M. Testa
- Multiple change‐point models for time series

- I.B. MacNeill, V.K. Jandhyala, A. Kaul and S.B. Fotopoulos
- Harnessing the power of topological data analysis to detect change points

- Umar Islambekov, Monisha Yuvaraj and Yulia R. Gel
- Structural break analysis for spectrum and trace of covariance operators

- A. Aue, G. Rice and O. Sönmez
- Change‐point methods for environmental monitoring and assessment

- Venkata K. Jandhyala and Yulia Gel
| |