Advances in Data Analysis and Classification
2008 - 2025
Current editor(s): H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs From: Springer German Classification Society - Gesellschaft für Klassifikation (GfKl) Japanese Classification Society (JCS) Classification and Data Analysis Group of the Italian Statistical Society (CLADAG) International Federation of Classification Societies (IFCS) Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 15, issue 4, 2021
- Editorial for ADAC issue 4 of volume 15 (2021) pp. 825-828

- Maurizio Vichi, Andrea Cerioli, Hans A. Kestler, Akinori Okada and Claus Weihs
- PCA-KL: a parametric dimensionality reduction approach for unsupervised metric learning pp. 829-868

- Alexandre L. M. Levada
- Robust regression with compositional covariates including cellwise outliers pp. 869-909

- Nikola Štefelová, Andreas Alfons, Javier Palarea-Albaladejo, Peter Filzmoser and Karel Hron
- Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification pp. 911-936

- Roberto Medico, Joeri Ruyssinck, Dirk Deschrijver and Tom Dhaene
- Nonlinear dimension reduction for conditional quantiles pp. 937-956

- Eliana Christou, Annabel Settle and Andreas Artemiou
- Hierarchical clustering with discrete latent variable models and the integrated classification likelihood pp. 957-986

- Etienne Côme, Nicolas Jouvin, Pierre Latouche and Charles Bouveyron
- REMAXINT: a two-mode clustering-based method for statistical inference on two-way interaction pp. 987-1013

- Zaheer Ahmed, Alberto Cassese, Gerard Breukelen and Jan Schepers
- Consensus among preference rankings: a new weighted correlation coefficient for linear and weak orderings pp. 1015-1037

- Antonella Plaia, Simona Buscemi and Mariangela Sciandra
- Estimating the class prior for positive and unlabelled data via logistic regression pp. 1039-1068

- Małgorzata Łazęcka, Jan Mielniczuk and Paweł Teisseyre
- A convergent algorithm for bi-orthogonal nonnegative matrix tri-factorization pp. 1069-1102

- Andri Mirzal
Volume 15, issue 3, 2021
- Editorial for ADAC issue 3 of volume 15 (2021) pp. 543-546

- Maurizio Vichi, Andrea Cerioli, Hans Kestler, Akinori Okada and Claus Weihs
- Adaptive sparse group LASSO in quantile regression pp. 547-573

- Alvaro Mendez-Civieta, M. Carmen Aguilera-Morillo and Rosa E. Lillo
- A novel dictionary learning method based on total least squares approach with application in high dimensional biological data pp. 575-597

- Parvaneh Parvasideh and Mansoor Rezghi
- Better than the best? Answers via model ensemble in density-based clustering pp. 599-623

- Alessandro Casa, Luca Scrucca and Giovanna Menardi
- Sparse group fused lasso for model segmentation: a hybrid approach pp. 625-671

- David Degras
- A Riemannian geometric framework for manifold learning of non-Euclidean data pp. 673-699

- Cheongjae Jang, Yung-Kyun Noh and Frank Chongwoo Park
- Robust semiparametric inference for polytomous logistic regression with complex survey design pp. 701-734

- Elena Castilla, Abhik Ghosh, Nirian Martin and Leandro Pardo
- Functional data clustering by projection into latent generalized hyperbolic subspaces pp. 735-757

- Alex Sharp and Ryan Browne
- A bivariate finite mixture growth model with selection pp. 759-793

- David Aristei, Silvia Bacci, Francesco Bartolucci and Silvia Pandolfi
- Sparse principal component regression via singular value decomposition approach pp. 795-823

- Shuichi Kawano
Volume 15, issue 2, 2021
- Editorial for ADAC issue 2 of volume 15 (2021) pp. 261-265

- Maurizio Vichi, Andrea Cerioli, Hans Kestler, Akinori Okada and Claus Weihs
- M-estimators and trimmed means: from Hilbert-valued to fuzzy set-valued data pp. 267-288

- Beatriz Sinova, Stefan Van Aelst and Pedro Terán
- Isotonic boosting classification rules pp. 289-313

- David Conde, Miguel A. Fernández, Cristina Rueda and Bonifacio Salvador
- Regime dependent interconnectedness among fuzzy clusters of financial time series pp. 315-336

- Giovanni De Luca and Paola Zuccolotto
- Active learning of constraints for weighted feature selection pp. 337-377

- Samah Hijazi, Denis Hamad, Mariam Kalakech and Ali Kalakech
- A bias-variance analysis of state-of-the-art random forest text classifiers pp. 379-405

- Thiago Salles, Leonardo Rocha and Marcos Gonçalves
- Hierarchical conceptual clustering based on quantile method for identifying microscopic details in distributional data pp. 407-436

- Kadri Umbleja, Manabu Ichino and Hiroyuki Yaguchi
- Robust archetypoids for anomaly detection in big functional data pp. 437-462

- Guillermo Vinue and Irene Epifanio
- A perceptually optimised bivariate visualisation scheme for high-dimensional fold-change data pp. 463-480

- André Müller, Ludwig Lausser, Adalbert Wilhelm, Timo Ropinski, Matthias Platzer, Heiko Neumann and Hans A. Kestler
- Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions pp. 481-512

- Sharon X. Lee, Tsung-I Lin and Geoffrey J. McLachlan
- Clustering of modal-valued symbolic data pp. 513-541

- Nataša Kejžar, Simona Korenjak-Černe and Vladimir Batagelj
Volume 15, issue 1, 2021
- Editorial for ADAC issue 1 of volume 15 (2021) pp. 1-4

- Maurizio Vichi, Andrea Cerioli, Hans Kestler, Akinori Okada and Claus Weihs
- Interval forecasts based on regression trees for streaming data pp. 5-36

- Xin Zhao, Stuart Barber, Charles C. Taylor and Zoka Milan
- From-below Boolean matrix factorization algorithm based on MDL pp. 37-56

- Tatiana Makhalova and Martin Trnecka
- A robust spatial autoregressive scalar-on-function regression with t-distribution pp. 57-81

- Tingting Huang, Gilbert Saporta, Huiwen Wang and Shanshan Wang
- A combination of k-means and DBSCAN algorithm for solving the multiple generalized circle detection problem pp. 83-98

- Rudolf Scitovski and Kristian Sabo
- Efficient regularized spectral data embedding pp. 99-119

- Lazhar Labiod and Mohamed Nadif
- A cost-sensitive constrained Lasso pp. 121-158

- Rafael Blanquero, Emilio Carrizosa, Pepa Ramírez-Cobo and M. Remedios Sillero-Denamiel
- A novel semi-supervised support vector machine with asymmetric squared loss pp. 159-191

- Huimin Pei, Qiang Lin, Liran Yang and Ping Zhong
- Kappa coefficients for dichotomous-nominal classifications pp. 193-208

- Matthijs J. Warrens
- Clustering discrete-valued time series pp. 209-229

- Tyler Roick, Dimitris Karlis and Paul D. McNicholas
- Simultaneous dimension reduction and clustering via the NMF-EM algorithm pp. 231-260

- Léna Carel and Pierre Alquier
Volume 14, issue 4, 2020
- Data generation for composite-based structural equation modeling methods pp. 747-757

- Rainer Schlittgen, Marko Sarstedt and Christian M. Ringle
- Mixtures of Dirichlet-Multinomial distributions for supervised and unsupervised classification of short text data pp. 759-770

- Laura Anderlucci and Cinzia Viroli
- On the use of quantile regression to deal with heterogeneity: the case of multi-block data pp. 771-784

- Cristina Davino, Rosaria Romano and Domenico Vistocco
- Editable machine learning models? A rule-based framework for user studies of explainability pp. 785-799

- Stanislav Vojíř and Tomáš Kliegr
- A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C pp. 801-819

- Yanou Ramon, David Martens, Foster Provost and Theodoros Evgeniou
- A process framework for inducing and explaining Datalog theories pp. 821-835

- Mark Gromowski, Michael Siebers and Ute Schmid
- The ultrametric correlation matrix for modelling hierarchical latent concepts pp. 837-853

- Carlo Cavicchia, Maurizio Vichi and Giorgia Zaccaria
- SEM-Tree hybrid models in the preferences analysis of the members of Polish households pp. 855-869

- Adam Sagan and Mariusz Łapczyński
- Chained correlations for feature selection pp. 871-884

- Ludwig Lausser, Robin Szekely and Hans A. Kestler
- Adapted single-cell consensus clustering (adaSC3) pp. 885-896

- Cornelia Fuetterer, Thomas Augustin and Christiane Fuchs
- Automatic gait classification patterns in spastic hemiplegia pp. 897-925

- Ana Aguilera and Alberto Subero
- Predicting brand confusion in imagery markets based on deep learning of visual advertisement content pp. 927-945

- Atsuho Nakayama and Daniel Baier
- The GNG neural network in analyzing consumer behaviour patterns: empirical research on a purchasing behaviour processes realized by the elderly consumers pp. 947-982

- Kamila Migdał-Najman, Krzysztof Najman and Sylwia Badowska
Volume 14, issue 3, 2020
- Editorial for ADAC issue 3 of volume 14 (2020) pp. 513-515

- Maurizio Vichi, Andrea Cerioli, Hans Kestler, Akinori Okada and Claus Weihs
- Modelling heterogeneity: on the problem of group comparisons with logistic regression and the potential of the heterogeneous choice model pp. 517-542

- Gerhard Tutz
- Is-ClusterMPP: clustering algorithm through point processes and influence space towards high-dimensional data pp. 543-570

- Khadidja Henni, Pierre-Yves Louis, Brigitte Vannier and Ahmed Moussa
- Sparse classification with paired covariates pp. 571-588

- Armin Rauschenberger, Iuliana Ciocănea-Teodorescu, Marianne A. Jonker, Renée X. Menezes and Mark A. Wiel
- Connecting the multivariate partial least squares with canonical analysis: a path-following approach pp. 589-609

- Lukáš Malec and Vladimír Janovský
- A stable cardinality distance for topological classification pp. 611-628

- Vasileios Maroulas, Cassie Putman Micucci and Adam Spannaus
- Familywise decompositions of Pearson’s chi-square statistic in the analysis of contingency tables pp. 629-649

- Rosaria Lombardo, Yoshio Takane and Eric J. Beh
- Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations pp. 651-676

- Alba M. Franco-Pereira and Rosa E. Lillo
- Enhancing techniques for learning decision trees from imbalanced data pp. 677-745

- Ikram Chaabane, Radhouane Guermazi and Mohamed Hammami
Volume 14, issue 2, 2020
- Special issue on “Innovations on model based clustering and classification” pp. 231-234

- Christophe Biernacki, Luis Angel García-Escudero and Salvatore Ingrassia
- Seemingly unrelated clusterwise linear regression pp. 235-260

- Giuliano Galimberti and Gabriele Soffritti
- Semiparametric mixtures of regressions with single-index for model based clustering pp. 261-292

- Sijia Xiang and Weixin Yao
- Gaussian parsimonious clustering models with covariates and a noise component pp. 293-325

- Keefe Murphy and Thomas Brendan Murphy
- A robust approach to model-based classification based on trimming and constraints pp. 327-354

- Andrea Cappozzo, Francesca Greselin and Thomas Brendan Murphy
- Mixture modeling of data with multiple partial right-censoring levels pp. 355-378

- Semhar Michael, Tatjana Miljkovic and Volodymyr Melnykov
- Gaussian mixture modeling and model-based clustering under measurement inconsistency pp. 379-413

- Shuchismita Sarkar, Volodymyr Melnykov and Rong Zheng
- Mixtures of skewed matrix variate bilinear factor analyzers pp. 415-434

- Michael P. B. Gallaugher and Paul D. McNicholas
- Data projections by skewness maximization under scale mixtures of skew-normal vectors pp. 435-461

- Jorge M. Arevalillo and Hilario Navarro
- ParticleMDI: particle Monte Carlo methods for the cluster analysis of multiple datasets with applications to cancer subtype identification pp. 463-484

- Nathan Cunningham, Jim E. Griffin and David L. Wild
- A stochastic block model for interaction lengths pp. 485-512

- Riccardo Rastelli and Michael Fop
Volume 14, issue 1, 2020
- Count regression trees pp. 5-27

- Nan-Ting Liu, Feng-Chang Lin and Yu-Shan Shih
- Learning a metric when clustering data points in the presence of constraints pp. 29-56

- Ahmad Ali Abin, Mohammad Ali Bashiri and Hamid Beigy
- Clustering genomic words in human DNA using peaks and trends of distributions pp. 57-76

- Ana Helena Tavares, Jakob Raymaekers, Peter Rousseeuw, Paula Brito and Vera Afreixo
- Data clustering based on principal curves pp. 77-96

- Elson Claudio Correa Moraes, Danton Diego Ferreira, Giovani Bernardes Vitor and Bruno Henrique Groenner Barbosa
- Ensemble of optimal trees, random forest and random projection ensemble classification pp. 97-116

- Zardad Khan, Asma Gul, Aris Perperoglou, Miftahuddin Miftahuddin, Osama Mahmoud, Werner Adler and Berthold Lausen
- A fragmented-periodogram approach for clustering big data time series pp. 117-146

- Jorge Caiado, Nuno Crato and Pilar Poncela
- How well do SEM algorithms imitate EM algorithms? A non-asymptotic analysis for mixture models pp. 147-173

- Johannes Blömer, Sascha Brauer, Kathrin Bujna and Daniel Kuntze
- Optimal arrangements of hyperplanes for SVM-based multiclass classification pp. 175-199

- Víctor Blanco, Alberto Japón and Justo Puerto
- Classification using sequential order statistics pp. 201-230

- Alexander Katzur and Udo Kamps
| |