Statistical Inference for Stochastic Processes
1998 - 2025
Current editor(s): Denis Bosq, Yury A. Kutoyants and Marc Hallin From Springer Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 25, issue 3, 2022
- On minimax robust testing of composite hypotheses on Poisson process intensity pp. 431-448

- M. V. Burnashev
- A chi-square type test for time-invariant fiber pathways of the brain pp. 449-469

- Juna Goo, Lyudmila Sakhanenko and David C. Zhu
- Optimal linear interpolation of multiple missing values pp. 471-483

- Tucker McElroy and Dimitris N. Politis
- Weak convergence of nonparametric estimators of the multidimensional and multidimensional-multivariate renewal functions on Skorohod topology spaces pp. 485-504

- Michel Harel, Joseph Ngatchou-Wandji, Livasoa Andriamampionona and Victor Harison
- A Lepskiĭ-type stopping rule for the covariance estimation of multi-dimensional Lévy processes pp. 505-535

- Katerina Papagiannouli
- Improved estimation method for high dimension semimartingale regression models based on discrete data pp. 537-576

- Evgeny Pchelintsev, Serguei Pergamenshchikov and Maria Leshchinskaya
- Finite-sample properties of estimators for first and second order autoregressive processes pp. 577-598

- Sigrunn H. Sørbye, Pedro G. Nicolau and Håvard Rue
- Randomized consistent statistical inference for random processes and fields pp. 599-627

- Arkady Tempelman
Volume 25, issue 2, 2022
- Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes pp. 189-225

- Simon Clinet
- Likelihood theory for the graph Ornstein-Uhlenbeck process pp. 227-260

- Valentin Courgeau and Almut Veraart
- Detection and identification of changes of hidden Markov chains: asymptotic theory pp. 261-301

- Savas Dayanik and Kazutoshi Yamazaki
- Contrast estimation for noisy observations of diffusion processes via closed-form density expansions pp. 303-336

- Salima El Kolei and Fabien Navarro
- Martingale estimation functions for Bessel processes pp. 337-353

- Nicole Hufnagel and Jeannette H. C. Woerner
- Estimation of stationary probability of semi-Markov Chains pp. 355-364

- Nikolaos Limnios and Bei Wu
- Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination pp. 365-396

- Kevin W. Lu
- Adaptive tests for parameter changes in ergodic diffusion processes from discrete observations pp. 397-430

- Yozo Tonaki, Yusuke Kaino and Masayuki Uchida
Volume 25, issue 1, 2022
- Preface pp. 1-1

- O Lepski
- On the asymptotic behavior of solutions of the Cauchy problem for parabolic equations with time periodic coefficients pp. 3-16

- R. Z. Khasminskii and N. V. Krylov
- On minimax cardinal spline interpolation pp. 17-41

- B. Levit
- Quasi-likelihood analysis and its applications pp. 43-60

- Nakahiro Yoshida
- Estimation of the position and time of emission of a source pp. 61-82

- O. V. Chernoyarov, S. Dachian, C. Farinetto and Yu. A. Kutoyants
- MAP and Bayes tests in sparse vectors detection pp. 83-103

- Golubev Yuri
- Numerical solutions for optimal control of stochastic Kolmogorov systems with regime-switching and random jumps pp. 105-125

- Hongjiang Qian, Zhexin Wen and George Yin
- Adaptive efficient analysis for big data ergodic diffusion models pp. 127-158

- Leonid I. Galtchouk and Serge M. Pergamenshchikov
- Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend pp. 159-187

- Alexander Kukush, Stanislav Lohvinenko, Yuliya Mishura and Kostiantyn Ralchenko
Volume 24, issue 3, 2021
- On smooth change-point location estimation for Poisson Processes pp. 499-524

- Arij Amiri and Sergueï Dachian
- Asymptotic properties of conditional least-squares estimators for array time series pp. 525-547

- Rajae Azrak and Guy Mélard
- Estimating FARIMA models with uncorrelated but non-independent error terms pp. 549-608

- Yacouba Boubacar Maïnassara, Youssef Esstafa and Bruno Saussereau
- SPHARMA approximations for stationary functional time series on the sphere pp. 609-634

- Alessia Caponera
- Asymptotic distribution of the score test for detecting marks in hawkes processes pp. 635-668

- Simon Clinet, William T. M. Dunsmuir, Gareth W. Peters and Kylie-Anne Richards
- Nonparametric estimation for I.I.D. paths of fractional SDE pp. 669-705

- Fabienne Comte and Nicolas Marie
- Hypotheses testing and posterior concentration rates for semi-Markov processes pp. 707-732

- I. Votsi, G. Gayraud, V. S. Barbu and N. Limnios
- Shrinkage estimation for multivariate time series pp. 733-751

- Yan Liu, Yoshiyuki Tanida and Masanobu Taniguchi
Volume 24, issue 2, 2021
- Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach pp. 241-276

- A. Abu-Awwad, V. Maume-Deschamps and P. Ribereau
- Hawkes process and Edgeworth expansion with application to maximum likelihood estimator pp. 277-325

- Masatoshi Goda
- Estimation of all parameters in the fractional Ornstein–Uhlenbeck model under discrete observations pp. 327-351

- El Mehdi Haress and Yaozhong Hu
- A Kalman particle filter for online parameter estimation with applications to affine models pp. 353-403

- Jian He, Asma Khedher and Peter Spreij
- How to test that a given process is an Ornstein–Uhlenbeck process pp. 405-419

- Estate V. Khmaladze
- Maximum spacing estimation for continuous time Markov chains and semi-Markov processes pp. 421-443

- Kristi Kuljus and Bo Ranneby
- Nonparametric model for a tensor field based on high angular resolution diffusion imaging (HARDI) pp. 445-476

- Lyudmila Sakhanenko, Michael DeLaura and David C. Zhu
- Estimation of stopping times for stopped self-similar random processes pp. 477-498

- Viktor Schulmann
Volume 24, issue 1, 2021
- The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes pp. 1-15

- Andrea Arfè, Stefano Peluso and Pietro Muliere
- Efficient parametric estimation for a signal-plus-noise Gaussian model from discrete time observations pp. 17-33

- Dominique Dehay, Khalil El Waled and Vincent Monsan
- Polynomials under Ornstein–Uhlenbeck noise and an application to inference in stochastic Hodgkin–Huxley systems pp. 35-59

- Reinhard Höpfner
- Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function pp. 61-148

- Chiara Amorino and Arnaud Gloter
- Nonparametric estimation for i.i.d. Gaussian continuous time moving average models pp. 149-177

- Fabienne Comte and Valentine Genon-Catalot
- The value of the high, low and close in the estimation of Brownian motion pp. 179-210

- Kurt Riedel
- On Neyman–Pearson minimax detection of Poisson process intensity pp. 211-221

- M. V. Burnashev
- EM algorithm for stochastic hybrid systems pp. 223-239

- Masaaki Fukasawa
Volume 23, issue 3, 2020
- Simultaneous Testing of Change-Point Location and of a Regular Parameter by Poisson Observations pp. 465-487

- Sergueï Dachian and Lin Yang
- Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process pp. 489-515

- Charlotte Dion and Sarah Lemler
- Optimal iterative threshold-kernel estimation of jump diffusion processes pp. 517-552

- José E. Figueroa-López, Cheng Li and Jeffrey Nisen
- Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails pp. 553-570

- Alexander Gushchin, Ilya Pavlyukevich and Marian Ritsch
- Oscillating Gaussian processes pp. 571-593

- Pauliina Ilmonen, Soledad Torres and Lauri Viitasaari
- Parametric inference for hypoelliptic ergodic diffusions with full observations pp. 595-635

- Anna Melnykova
- The robust focused information criterion for strong mixing stochastic processes with $$\mathscr {L}^{2}$$ L 2 -differentiable parametric densities pp. 637-663

- S. C. Pandhare and T. V. Ramanathan
- Recursive nonparametric regression estimation for dependent strong mixing functional data pp. 665-697

- Yousri Slaoui
Volume 23, issue 2, 2020
- Preface pp. 249-249

- Marina Kleptsyna
- Parameter identification for the Hermite Ornstein–Uhlenbeck process pp. 251-270

- Obayda Assaad and Ciprian A. Tudor
- Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion pp. 271-300

- Karine Bertin, Nicolas Klutchnikoff, Fabien Panloup and Maylis Varvenne
- Testing for the change of the mean-reverting parameter of an autoregressive model with stationary Gaussian noise pp. 301-318

- Alexandre Brouste, Chunhao Cai, Marius Soltane and Longmin Wang
- An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter pp. 319-353

- Kohei Chiba
- Spot estimation for fractional Ornstein–Uhlenbeck stochastic volatility model: consistency and central limit theorem pp. 355-380

- Yaroslav Eumenius-Schulz
- A minimal contrast estimator for the linear fractional stable motion pp. 381-413

- Mathias Mørck Ljungdahl and Mark Podolskij
- Comparison of the LS-based estimators and the MLE for the fractional Ornstein–Uhlenbeck process pp. 415-434

- Katsuto Tanaka
- Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion pp. 435-463

- Ciprian A. Tudor and Nakahiro Yoshida
Volume 23, issue 1, 2020
- Estimation of weak ARMA models with regime changes pp. 1-52

- Yacouba Boubacar Maïnassara and Landy Rabehasaina
- Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations pp. 53-81

- Yiying Cheng, Yaozhong Hu and Hongwei Long
- Statistical analysis of some evolution equations driven by space-only noise pp. 83-103

- Igor Cialenco, Hyun-Jung Kim and Sergey V. Lototsky
- Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations pp. 105-127

- Quentin Clairon and Adeline Samson
- On the Whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models pp. 129-169

- A. V. Ivanov, N. N. Leonenko and I. V. Orlovskyi
- Hybrid estimation for ergodic diffusion processes based on noisy discrete observations pp. 171-198

- Yusuke Kaino, Shogo H. Nakakita and Masayuki Uchida
- Inference in a multivariate generalized mean-reverting process with a change-point pp. 199-226

- Sévérien Nkurunziza and Lei Shen
- Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean pp. 227-247

- Radomyra Shevchenko and Ciprian A. Tudor
| |