Computational Statistics
2000 - 2025
Current editor(s): Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik From Springer Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 34, issue 4, 2019
- The 2013 Data Expo of the American Statistical Association pp. 1443-1447

- Heike Hofmann, Hadley Wickham and Dianne Cook
- Putting down roots: a graphical exploration of community attachment pp. 1449-1464

- Andee J. Kaplan and Eric R. Hare
- A tale of four cities: exploring the soul of State College, Detroit, Milledgeville and Biloxi pp. 1465-1487

- Karsten Maurer, Dave Osthus and Adam Loy
- Consistency of survey opinions and external data pp. 1489-1509

- Samuel Ackerman
- Community engagement and subgroup meta-knowledge: some factors in the soul of a community pp. 1511-1535

- Amelia A. McNamara
- Clicks and cliques: exploring the soul of the community pp. 1537-1563

- Natalia da Silva and Ignacio Alvarez-Castro
- Soul of the community: an attempt to assess attachment to a community pp. 1565-1589

- Anna Quach, Jürgen Symanzik and Nicole Forsgren
- Drivers of community attachment: an interactive analysis pp. 1591-1611

- Jessica M. Orth
- Classification tree algorithm for grouped variables pp. 1613-1648

- A. Poterie, J.-F. Dupuy, V. Monbet and L. Rouvière
- Methods for estimating the optimal number and location of cut points in multivariate survival analysis: a statistical solution to the controversial effect of BMI pp. 1649-1674

- Chung Chang, Meng-Ke Hsieh, An Jen Chiang, Yi-Hsuan Tsai, Chia-Chiung Liu and Jiabin Chen
- Semiparametric approaches for matched case–control studies with error-in-covariates pp. 1675-1692

- Nels G. Johnson and Inyoung Kim
- Estimation of random-effects model for longitudinal data with nonignorable missingness using Gibbs sampling pp. 1693-1710

- Prajamitra Bhuyan
- Weighted composite quantile regression for single index model with missing covariates at random pp. 1711-1740

- Huilan Liu, Hu Yang and Changgen Peng
- Predicting missing values: a comparative study on non-parametric approaches for imputation pp. 1741-1764

- Burim Ramosaj and Markus Pauly
- Bootstrap ICC estimators in analysis of small clustered binary data pp. 1765-1778

- Bei Wang, Yi Zheng, Kyle M. Irimata and Jeffrey R. Wilson
- Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap pp. 1779-1813

- Adrian O’Hagan, Thomas Brendan Murphy, Luca Scrucca and Isobel Claire Gormley
- Model-based INAR bootstrap for forecasting INAR(p) models pp. 1815-1848

- Luisa Bisaglia and Margherita Gerolimetto
- Bagging of density estimators pp. 1849-1869

- Mathias Bourel and Jairo Cugliari
- Maximum likelihood method for bandwidth selection in kernel conditional density estimate pp. 1871-1887

- Kateřina Konečná and Ivanka Horová
- Four algorithms to construct a sparse kriging kernel for dimensionality reduction pp. 1889-1909

- Christophette Blanchet-Scalliet, Céline Helbert, Mélina Ribaud and Céline Vial
Volume 34, issue 3, 2019
- Proceedings of Reisensburg 2016–2017 pp. 943-944

- Matthias Schmid, Bernd Bischl and Hans A. Kestler
- Time series anomaly detection based on shapelet learning pp. 945-976

- Laura Beggel, Bernhard X. Kausler, Martin Schiegg, Michael Pfeiffer and Bernd Bischl
- OpenML: An R package to connect to the machine learning platform OpenML pp. 977-991

- Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke, Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren and Bernd Bischl
- Sparse kernel deep stacking networks pp. 993-1014

- Thomas Welchowski and Matthias Schmid
- Bayesian model-based clustering for longitudinal ordinal data pp. 1015-1038

- Roy Costilla, Ivy Liu, Richard Arnold and Daniel Fernández
- Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework pp. 1039-1053

- Mohsen Maleki and Darren Wraith
- A skew-normal dynamic linear model and Bayesian forecasting pp. 1055-1085

- Reinaldo B. Arellano-Valle, Javier E. Contreras-Reyes, Freddy O. López Quintero and Abel Valdebenito
- A note on parallel sampling in Markov graphs pp. 1087-1107

- Verena Bauer, Karl Fürlinger and Göran Kauermann
- A multiple-try Metropolis–Hastings algorithm with tailored proposals pp. 1109-1133

- Xin Luo and Håkon Tjelmeland
- Robust Bayesian seemingly unrelated regression model pp. 1135-1157

- Chamberlain Mbah, Kris Peremans, Stefan Van Aelst and Dries F. Benoit
- Objective Bayesian tests for Fieller–Creasy problem pp. 1159-1182

- Dal Ho Kim, Woo Dong Lee, Sang Gil Kang and Yongku Kim
- Periodic autoregressive models with closed skew-normal innovations pp. 1183-1213

- T. Manouchehri and A. R. Nematollahi
- Two-sided exponential–geometric distribution: inference and volatility modeling pp. 1215-1245

- Emrah Altun
- On the robustness of an epsilon skew extension for Burr III distribution on the real line pp. 1247-1273

- Mehmet Niyazi Çankaya, Abdullah Yalçınkaya, Ömer Altındaǧ and Olcay Arslan
- Investigating GQL-based inferential approaches for non-stationary BINAR(1) model under different quantum of over-dispersion with application pp. 1275-1313

- N. Mamode Khan, Y. Sunecher, V. Jowaheer, M. M. Ristic and M. Heenaye-Mamode Khan
- Robust estimation for spatial autoregressive processes based on bounded innovation propagation representations pp. 1315-1335

- Grisel Maribel Britos and Silvia María Ojeda
- Recursive estimation of multivariate hidden Markov model parameters pp. 1337-1353

- Jūratė Vaičiulytė and Leonidas Sakalauskas
- An enhanced genetic algorithm with new mutation for cluster analysis pp. 1355-1392

- M. A. El-Shorbagy, A. Y. Ayoub, A. A. Mousa and I. M. El-Desoky
- Some new statistical methods for a class of zero-truncated discrete distributions with applications pp. 1393-1426

- Guo-Liang Tian, Xiqian Ding, Yin Liu and Man-Lai Tang
- Probability of misclassification in model-based clustering pp. 1427-1442

- Xuwen Zhu
Volume 34, issue 2, 2019
- Editorial on the special issue on Functional Data Analysis and Related Topics pp. 447-450

- Germán Aneiros, Ricardo Cao and Philippe Vieu
- Modeling functional data: a test procedure pp. 451-468

- Enea G. Bongiorno, Aldo Goia and Philippe Vieu
- Variable selection in functional additive regression models pp. 469-487

- Manuel Febrero-Bande, Wenceslao González-Manteiga and Manuel Oviedo de la Fuente
- Dynamic semi-parametric factor model for functional expectiles pp. 489-502

- Petra Burdejová and Wolfgang Härdle
- Robust exponential squared loss-based estimation in semi-functional linear regression models pp. 503-525

- Ping Yu, Zhongyi Zhu and Zhongzhan Zhang
- Functional data clustering via hypothesis testing k-means pp. 527-549

- Adriano Zanin Zambom, Julian A. A. Collazos and Ronaldo Dias
- Clusters of effects curves in quantile regression models pp. 551-569

- Gianluca Sottile and Giada Adelfio
- fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data pp. 571-597

- Tomasz Górecki and Łukasz Smaga
- High dimensional two-sample test based on the inter-point distance pp. 599-615

- Shin-ichi Tsukada
- Benefits of functional PCA in the analysis of single-trial auditory evoked potentials pp. 617-629

- Jan Koláček, Ondřej Pokora, Daniela Kuruczová and Tzai-Wen Chiu
- Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches pp. 631-652

- O. I. Traore, P. Cristini, N. Favretto-Cristini, L. Pantera, P. Vieu and S. Viguier-Pla
- Binary surrogates with stratified samples when weights are unknown pp. 653-682

- Yu-Min Huang
- A first-order approximated jackknifed ridge estimator in binary logistic regression pp. 683-712

- M. Revan Özkale and Engin Arıcan
- Structure learning of sparse directed acyclic graphs incorporating the scale-free property pp. 713-742

- Xiao Guo, Hai Zhang, Yao Wang and Yong Liang
- Power comparison for propensity score methods pp. 743-761

- Byeong Yeob Choi, Chen-Pin Wang, Joel Michalek and Jonathan Gelfond
- Classification trees with soft splits optimized for ranking pp. 763-786

- Jakub Dvořák
- Median constrained bucket order rank aggregation pp. 787-802

- Antonio D’Ambrosio, Carmela Iorio, Michele Staiano and Roberta Siciliano
- Package mTEXO for testing the presence of outliers in exponential samples pp. 803-818

- Chien-Tai Lin, Ying-Chen Lee and Narayanaswamy Balakrishnan
- On the penalized maximum likelihood estimation of high-dimensional approximate factor model pp. 819-846

- Shaoxin Wang, Hu Yang and Chaoli Yao
- A penalized simulated maximum likelihood method to estimate parameters for SDEs with measurement error pp. 847-863

- Libo Sun, Chihoon Lee and Jennifer A. Hoeting
- Permutation based testing on covariance separability pp. 865-883

- Seongoh Park, Johan Lim, Xinlei Wang and Sanghan Lee
- Weighted multiple testing procedure for grouped hypotheses with k-FWER control pp. 885-909

- Li Wang
- Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality pp. 911-941

- Takayuki Yamada and Tetsuto Himeno
Volume 34, issue 1, 2019
- The performance of latent growth curve model-based structural equation model trees to uncover population heterogeneity in growth trajectories pp. 1-22

- Satoshi Usami, Ross Jacobucci and Timothy Hayes
- Estimating reducible stochastic differential equations by conversion to a least-squares problem pp. 23-46

- Oscar García
- SamP2CeT: an interactive computer program for sample size and power calculation for two-level cost-effectiveness trials pp. 47-70

- Md Abu Manju, Math J. J. M. Candel and Gerard J. P. van Breukelen
- Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors pp. 71-87

- Hong-Yan Jiang and Rong-Xian Yue
- An iterative algorithm to bound partial moments pp. 89-122

- Sander Muns
- Flexible regression modeling for censored data based on mixtures of student-t distributions pp. 123-152

- Víctor H. Lachos, Celso R. B. Cabral, Marcos O. Prates and Dipak K. Dey
- Joint modelling of two count variables when one of them can be degenerate pp. 153-171

- Jacek Osiewalski and Jerzy Marzec
- Modified beta modified-Weibull distribution pp. 173-199

- Abdus Saboor, Muhammad Nauman Khan, Gauss M. Cordeiro, Marcelino A. R. Pascoa, Juliano Bortolini and Shahid Mubeen
- Improved model-based clustering performance using Bayesian initialization averaging pp. 201-231

- Adrian O’Hagan and Arthur White
- Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals pp. 233-252

- Manoj Chacko and Rakhi Mohan
- Approximate Bayesian computation for Lorenz curves from grouped data pp. 253-279

- Genya Kobayashi and Kazuhiko Kakamu
- Neural network gradient Hamiltonian Monte Carlo pp. 281-299

- Lingge Li, Andrew Holbrook, Babak Shahbaba and Pierre Baldi
- Assessing variable importance in clustering: a new method based on unsupervised binary decision trees pp. 301-321

- Badih Ghattas, Pierre Michel and Boyer Laurent
- Shape mixtures of skew-t-normal distributions: characterizations and estimation pp. 323-347

- Mostafa Tamandi, Ahad Jamalizadeh and Tsung-I Lin
- Bootstrapping estimates of stability for clusters, observations and model selection pp. 349-372

- Han Yu, Brian Chapman, Arianna Di Florio, Ellen Eischen, David Gotz, Mathews Jacob and Rachael Hageman Blair
- An extension of the K-means algorithm to clustering skewed data pp. 373-394

- Volodymyr Melnykov and Xuwen Zhu
- Fusion learning algorithm to combine partially heterogeneous Cox models pp. 395-414

- Lu Tang, Ling Zhou and Peter X. K. Song
- Improving the prediction performance of the LASSO by subtracting the additive structural noises pp. 415-432

- Morteza Amini and Mahdi Roozbeh
- A homoscedasticity test for the accelerated failure time model pp. 433-446

- Lili Yu, Liang Liu and Ding-Geng Chen
| |